Abstract

We study one-dimensional Su-Schrieffer-Heeger (SSH) models with quantum phonons using a continuous-time quantum Monte Carlo method. Within statistical errors, we obtain identical results for the SSH model with acoustic phonons, and a related model with a coupling to an optical bond phonon mode. Based on this agreement, we first study the Peierls metal-insulator transition of the spinless SSH model, and relate it to the Kosterlitz-Thouless transition of a spinless Luttinger liquid. In the Peierls phase, the spectral functions reveal the single-particle and charge gap, and a central peak related to long-range order. For the spinful SSH model, which has a dimerized ground state for any nonzero coupling, we reveal a symmetry-related degeneracy of spin and charge excitations, and the expected spin and charge gaps as well as a central peak. Finally, we study the SSH-$UV$ model with electron-phonon and electron-electron interaction. We observe a Mott phase with critical spin and bond correlations at weak electron-phonon coupling, and a Peierls phase with gapped spin excitations at strong coupling. We relate our findings to the extended Hubbard model, and discuss the physical origin of the agreement between optical and acoustic phonons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.