Abstract

We investigate single-particle properties of a mass-imbalanced Fermi gas in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover region. In the presence of mass imbalance, we point out that the ordinary $T$-matrix approximation, which has been extensively used to clarify various BCS-BEC crossover physics in the mass-balanced case, unphysically gives a double-valued solution in terms of the superfluid phase transition temperature $T_{\rm c}$ in the crossover region. To overcome this serious problem, we include higher order strong-coupling corrections beyond the $T$-matrix level. Using this extended $T$-matrix theory, we calculate single-particle excitations in the normal state above $T_{\rm c}$. The so-called pseudogap phenomena originating from pairing fluctuations are shown to be different between the light mass component and heavy mass component, which becomes more remarkable at higher temperatures. Since Fermi condensates with hetero-Cooper pairs have recently been discussed in various fields, such as exciton (polariton) condensates, as well as color superconductivity, our results would be useful for the further development of Fermi superfluid physics, beyond the conventional superfluid state with homo-Cooper pairs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call