Abstract

One of the important challenges that graphene must overcome before it can legitimately declare its irreplaceable position among the fields of plasmonic materials is to achieve efficiently coupling to external light. In this paper, we demonstrate an effective solution to this problem by exciting localized surface plasmon polaritons (SPPs) on graphene-coated nanowire arrays (GCNAs). These SPPs are analyzed by introducing a universal scaling law that considerably simplifies the understanding of these modes. Meanwhile, numerical experiments are carried out to demonstrate the theoretical analysis of plasmon excitations. The excited SPPs permit the control through both geometrical and physical properties. The proposed structure can be used as a tunable optical filter, a highly sensitive refractive index sensor, and other plasmonic modulation devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.