Abstract

We propose a realistic process for the excitation of surface plasmon polariton (SPP) modes in a silicon photonic waveguide (WG). The process involves the placement of buried oxide (BOX) composed of silica between a WG and silicon substrate. When the BOX thickness is manipulated, different amounts of modal power leak toward the BOX into the substrate and simultaneously acquire compensation from a semiconductor located on the WG. The compensation related to the leakage can be used to infer transparency gain. Similar to the case for a semiconductor laser cavity, the lowest transparency gain among WG modes can be favored; thus, only one mode can survive in the WG, and it is in the region with the specified BOX thickness. Finally, we propose a credible mechanism suitable for demonstrating the region requirements of the existence of SPP modes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.