Abstract

Structures are sometimes excited by pressure distributions which exhibit complex spatial correlation. This differs from common acoustic excitations since the pressure at one location is only partially correlated with the pressure at another location due to inherent spatial randomness within the forcing function. Two forcing functions which exhibit partially-correlated pressures are the diffuse acoustic field (DAF) and turbulent boundary layer (TBL) flow. A basic model for representing the spatial correlation for these two forcing functions will be reviewed in both the spatial and wavenumber domains. Recent approaches for computing the vibration of structures excited by DAF or TBL flow will then be summarized. Interesting physical effects, such as intermodal coupling, will be highlighted to illustrate the importance of properly modeling partial correlations when they exist.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call