Abstract

The excitation of resonance lines at 226.5 and 214.4 nm, corresponding to the transitions 226.5 (5p 2 P 1 2/0 →5s 2 S 1/2) and 5p 2 P 3 2/0 → 5s 2 S 1/2, respectively, in the Cd+ ion upon collisions with monoenergetic electrons with an energy in the range of 4–130 eV is studied with high precision by a spectroscopic method in crossing beams. It is found that the dependence of the effective excitation cross sections of the resonance doublet components on the energy of the electrons has a distinct resonance structure. It is shown that the dominant mechanism responsible for this structure is the capture of an incident electron by a Cd+ ion with the simultaneous excitation of an electron from the subvalence 4d 10 shell to the autoionizing states of the Cd atom with their subsequent decay (directly or via cascade transitions) to resonance levels of the ion. The results obtained are compared with data from other experiments and with the results of the R-matrix strong-coupling calculation of 15 states and of semiempirical calculation using the Van Regemorter formula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.