Abstract
We discuss the effects of multi-phonon excitations on heavy-ion fusion reactions at energies near and below the Coulomb barrier, focusing especially on the role of anharmonicities. We carry out a systematic study of those effects on the excitation function of the fusion cross section and on the fusion barrier distribution, by using the vibrational limit of the interacting boson model. We also analyze the recently measured high-precision data of the $^{16}$O + $^{148}$Sm fusion reaction with this model and discuss the anharmonic properties of the quadrupole as well as the octupole vibrations in $^{148}$Sm. Negative and positive static quadrupole moments are deduced for the first 2$^+$ and 3$^-$ states in $^{148}$Sm, respectively. It is shown that the fusion barrier distribution strongly depends on the sign of the quadrupole moments, suggesting that subbarrier fusion reactions offer an alternative method to extract the static quadrupole moments of phonon states in spherical nuclei.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.