Abstract

Infrared (IR) and terahertz plasmons in two-dimensional (2D) materials are commonly excited by metallic or dielectric grating couplers with deep-submicron features fabricated by e-beam lithography. Mass reproduction of such gratings at macroscopic scales is a labor-consuming and expensive technology. Here, we show that localized plasmons in graphene can be generated on macroscopic scales with couplers based on randomly oriented particle-like nanorods (NRs) in close proximity to graphene layer. We monitor the excitation of graphene plasmons indirectly by tracking the changes in reflection/absorption spectra of methylene blue (MB) or polymethyl methacrylate(PMMA) molecules deposited on the structure. Hybridization of spectrally broad graphene plasmon and narrow molecular oscillators results in enhanced oscillator strengths and Fano scattering related lines asymmetry in reflection spectra.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call