Abstract

Development of energy efficient techniques for generation of spin waves (magnons) is important for implementation of low-dissipation spin-wave-based logic circuits and memory elements. A promising approach to achieve this goal is based on the injection of short strain pulses into ferromagnetic films with a strong magnetoelastic coupling between spins and strains. Here we report micromagnetoelastic simulations of the magnetization and strain dynamics excited in Fe$_{81}$Ga$_{19}$ films by picosecond and nanosecond acoustic pulses created in a GaAs substrate by a transducer subjected to an optical or electrical impulse. The simulations performed via the numerical solution of the coupled Landau-Lifshitz-Gilbert and elastodynamic equations show that the injected strain pulse induces an inhomogeneous magnetization precession in the ferromagnetic film. The precession lasts up to 1 ns and can be treated as a superposition of magnon modes having the form of standing spin waves. For Fe$_{81}$Ga$_{19}$ films with nanoscale thickness, up to seven (six) distinct modes have been revealed under free-surface (pinning) magnetic boundary conditions. Remarkably, magnon modes with frequencies over 1 THz can be excited by acoustic pulses with an appropriate shape and duration in the films subjected to a moderate external magnetic field. This finding shows that short strain pulses represent a promising tool for the generation of THz spin waves necessary for the implementation of high-speed magnonic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.