Abstract

Abstract— Challenging Euglena gracilis—a unicellular microorganism that contains chloroplasts—with phenylacetaldehyde induces malondialdehyde formation, sustained red emission and Hill activity. In chloroplasts, phenylacetaldehyde appears to undergo peroxidase catalyzed oxidation to formic acid and triplet benzaldehyde; the latter or, less likely, a precursor thereof promotes lipid peroxidation. Triplet benzaldehyde and/or the excited species formed in lipid peroxidation transfer energy to the chlorophylls. This explanation also applies to spinach chloroplasts preparations, thus accounting for the previous unexplained observation that phenylacetaldehyde induced sustained red emission and Hill activity. A homogeneous picture is now available regarding the intracellular generation of excited states and concomitant excitation of built‐in structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.