Abstract

An infinite, elastic, circular cylindrical shell submerged in an infinite fluid medium is engulfed by a transverse, transient acoustic wave. The governing equations for modal shell response are reduced through the application of a new method of solution to two simultaneous equations in time; these equations are particularly amenable to solution by machine computation. Numerical results are presented for the first six modes of a uniform sandwich shell submerged in water and excited by a plane step-wave. These results are then used to evaluate the accuracy of a number of approximations which have been employed previously to treat this and similar problems. The results are also used to compute displacement, velocity, and flexural strain responses at certain points in the sandwich shell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.