Abstract
Cold Rydberg atoms are a promising platform for quantum technologies, and combining them with optical waveguides has the potential to create robust quantum information devices. Here, we experimentally observe the excitation of cold rubidium atoms to a large range of Rydberg S and D states through interaction with the evanescent field of an optical nanofiber. We develop a theoretical model to account for experimental phenomena present such as the AC Stark shifts and the Casimir–Polder interaction. This work strengthens the knowledge of Rydberg atom interactions with optical nanofibers and is a critical step toward the implementation of all-fiber quantum networks and waveguide quantum electrodynamics (QED) systems using highly excited atoms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.