Abstract
To clarify the excitation mechanism of hydrogen in transversely excited atmospheric-pressure (TEA) CO2 laser-induced helium gas plasma, atomic emission characteristics of H, C, F, and He were studied using a Teflon sheet (thickness of 2 mm) attached to a metal subtarget. The TEA CO2 laser (750 mJ, 200 ns) was focused on the Teflon sheet in the surrounding He gas at 1 atm. Atomic emissions of H, C, F, and He occurred with a long lifetime, a narrow spectrum width, and a low-background spectrum. The correlation emission intensity curves of H–He and F–He indicated a parabolic functions. To explain the emission characteristics, we offered a model in which helium metastable atoms (He*) play an important role in the excitation processes; namely, atoms collide with helium metastable atoms (He*) to be ionized by the Penning effect, and then recombine with electrons to produce excited states, from which atomic emissions occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.