Abstract

Two triplet excitons are generated through an ultrafast photophysical process, namely singlet fission (SF), providing a solution for efficient solar energy usage. In this work, we provide an effective guideline for designing SF materials by adjusting the planarity in cyclopentadithiophene (CPDT) derivatives. A practical strategy is proposed for tuning the quinoidal-biradical resonance structures by varying the electron push-pull groups of CPDTs for SF. The localized, delocalized, and intermediate charge-transfer excited configurations are predicted in the singlet excited state via computational simulations, which is further confirmed by ultrafast spectroscopy. Deduced from the potential energy surfaces in the low-lying excited states and transient absorption, the delocalized excited state is formed in 2.1 ps via postulated intramolecular SF in a polar solvent, followed by the ultrafast formation of the free triplet state with a lifetime of 6.8 ps. In comparison with different cross-conjugated chromophores, it is found that the increase in the charge separation could enhance the triplet-pair generation for iSF. We expect that by introducing symmetry-breaking modifications in the electronic configurations and adjusting the separation between the push-pull groups of CPDTs, it should be possible to prolong the duration of the free triplet state by preventing recombination within the triplet-pair excited configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.