Abstract

When two intense laser beams cross at a small angle, the interference in the crossing area results in a finite intensity grating. We consider femtosecond laser filamentation in such a grating, in a situation when the process is largely confined to the grating maxima and leads to formation of a structured filament wake channel. In a dense gas, electron impact processes during the laser pulse cause a copious excitation of neutral atoms, resulting in formation of a finite grating of the density of excited atoms. Numerically solving the equations of laser-driven kinetics, we obtain the properties of this grating, as depending on the characteristics of the interfering beams and especially on the interbeam phase delay. The excitation gratings thus formed give rise to a hallmark effect of Rabi sideband emission when probed by a picosecond 800 nm laser pulse, which couples with transitions in the excited states manifold. Spectral and spatial interference of the emitted radiation forms four-dimensional spatial-spectral fringe patterns accessible for observation on a remote screen. The patterns are indicative of the excitation grating structure; their sensitivity to the phase delay between the crossing pump pulses warrants experimental verification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call