Abstract

The investigations, initiated in, of the deuteron excitation functions for nuclear reactions with interaction energies of up to several tens of MeV were continued. The aim of the investigations is to obtain experimental data that can be used to determine the concentration of nuclides forming as a result of the transmutation of nuclei of the deuteron-irradiated material as well as to study the possibilities of predicting the data theoretically. In the present work we measured the excitation function for reactions in which long-lived nuclides are formed under irradiation of tin by deuterons. Calculations of the excitation functions were performed on the basis of the model of pre-equilibrium emission of nucleons and evaporation of nucleons and {gamma}-rays from the compound nucleus using the program ALICE LIVERMORE. Conclusions are drawn on the basis of a comparison of the measurements and calculations about the role of the compound-nucleus mechanism in reactions with deuterons on tin and the possibility of using the ALICE LIVERMORE program for predicting reaction excitation functions. Thus far the only such investigation for tin is the experiment performed with deuteron energies up to 13.6 MeV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.