Abstract

The Bialas–Bzdak model of elastic proton–proton scattering assumes a purely imaginary forward scattering amplitude, which consequently vanishes at the diffractive minima. We extended the model to arbitrarily large real parts in a way that constraints from unitarity are satisfied. The resulting model is able to describe elastic pp scattering not only at the lower ISR energies but also at [Formula: see text] in a statistically acceptable manner, both in the diffractive cone and in the region of the first diffractive minimum. The total cross-section as well as the differential cross-section of elastic proton–proton scattering is predicted for the future LHC energies of [Formula: see text], 14, 15 TeV and also to 28 TeV. A nontrivial, significantly nonexponential feature of the differential cross-section of elastic proton–proton scattering is analyzed and the excitation function of the nonexponential behavior is predicted. The excitation function of the shadow profiles is discussed and related to saturation at small impact parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.