Abstract

In this study the relative potencies of four established molluscan cardioexcitatory agents were examined on Buccinum heart. The potencies were, in decending order: phenylalanine-leucine-arginine-phenylalanine-NH2 (FLRFamide) > phenylalanine-methionine-arginine-phenylalanine-NH2 (FMRFamide; 80% of maximum) > 5-hydroxytryptamine (5HT; 60% of maximum) > guanosine triphosphate (GTP; 15% of maximum). FMRFamide and FLRFamide had similar dose-response curve patterns with thresholds at 10(-9) mol l(-1) but FLRFamide was more potent than FMRFamide. The superfused atrium was much less sensitive to all agonists than the internally perfused ventricle. FLRFamide and FMRFamide induced small depolarizations (1-2 mV) which triggered a burst of action potentials of about 5 mV which on reaching 4 mV triggered a burst of fast twitch contractions. Lithium, at high concentrations inhibited FMRFamide and 5-HT responses of internally perfused ventricles. Neomycin also inhibited peptide responses, but was without effect on 5-HT responses. Heparin, however, for technical reasons was without effect on ventricular responses to all three agonists. FMRFamide and FLRFamide appear to share a common receptor, the potency difference being due to the substitution of leucine for methionine in FLRFamide. The RF N-terminal sequence appears crucial for receptor activation. The Phospholipase C inhibitor neomycin equally inhibits responses to the two peptides while 5-HT responses are unaffected. This implicates a peptide/receptor interaction which activated inositol 1,4,5-trisphosphate (IP3) as a second messenger.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call