Abstract
Perylenediimides (PDIs) offer a number of attractive characteristics as alternatives to fullerenes in organic photovoltaics (OPVs), including favorable orbital energetics, high extinction coefficients in the visible spectral region, photostability, and the capacity to self-assemble into ordered nanostructures. However, energy transfer followed by charge separation in PDI assemblies must kinetically out-compete excimer formation that limits OPV performance. We report on the excitation energy transfer (EET) rate in a covalently linked PDI tetramer in which the PDI chromophores are arranged in a tetrahedral geometry about a tetraphenyladamantane core. Transient absorption spectroscopy of the tetramer in CH2Cl2 reveals a laser intensity-dependent fast absorption decay component indicative of singlet–singlet annihilation resulting from intramolecular EET. Femtosecond fluorescence anisotropy measurements show that the EET time constant τ = 6 ps, which is similar to that predicted for a through-space Förster EET mechanism. Concentration-dependent steady-state spectroscopic studies reveal the formation of intermolecular aggregates of the tetramers in toluene. The aggregates are formed by cofacial π-stacking interactions between PDIs of neighboring tetramers. Transient absorption spectra of the aggregated tetramers in toluene solution demonstrate long-lived excited-state decay dynamics (τ ∼ 30 ns) in agreement with previous observations of PDI excimers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.