Abstract
The photophysics of several systems composed of a single dye or pairs of dyes attached to solid particles has been studied in the dry solid state at high dye concentrations taking into account light scattering and inner filter effects. Interaction among dye molecules and singlet-singlet energy transfer are relevant in these conditions, as has been demonstrated for pairs of dyes with suitable spectral overlap. For single dyes, after correction for radiative energy transfer, fluorescence quenching is observed as the surface concentration increases. This effect is explained by two different trapping models. Irrespective of the nature of the traps, concentration quenching may be of static (trap absorption) and dynamic (energy transfer) nature. The unraveling of energy trapping mechanisms is a key to the development of efficient photoactive solid materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.