Abstract

Energy levels, radiative transition probabilities and autoionization rates for [Cd]4f145p65l′nl, [Cd]4f145p66l″nl, [Cd]4f145p55d2nl, [Cd]4f145p55d6l″nl, [Cd]4f135p65d2nl and [Cd]4f135p65d6l″nl (l′ = d, f, g, l″ = s, p, d, l = s, p, d, f, g and n = 5–7) states of Yb-like tungsten (W4 +) are calculated using the relativistic many-body perturbation theory method (RMBPT code), the multiconfiguration relativistic Hebrew University–Lawrence Livermore Atomic Code (HULLAC code) and the Hartree–Fock relativistic method (COWAN code). Branching ratios relative to the [Cd]4f145p65d, [Cd]4f145p66s and [Cd]4f145p66p thresholds in Tm-like tungsten and intensity factors are calculated for satellite lines, and dielectronic recombination (DR) rate coefficients are determined for the singly excited, as well as non-autoionizing core-excited states in Yb-like tungsten. Contributions from the autoionizing doubly excited states [Cd]4f145p65fnl, [Cd]4f145p66l″nl and core-excited [Cd]4f145p55d2nl, [Cd]4f145p55d6l″nl, [Cd]4f135p65d2nl, [Cd]4f135p65d6l″nl states (with n up to 100), which are particulary important for calculating the total DR rates, are estimated. Synthetic dielectronic satellite spectra from Yb-like W are simulated in a broad spectral range from 200 to 1400 Å. These calculations provide recommended values critically evaluated for their accuracy for a number of W4 + properties useful for a variety of applications including for fusion applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.