Abstract

Accurate excitation energies of localized defects have been a long-standing problem for electronic structure calculation methods. Using Mn4+-doped solids as our proof of principle, we show that diffusion quantum Monte Carlo (DMC) is able to predict phosphorescence emission energies within statistical error. To demonstrate the generality of our DMC approach for other possible localized defects, we conduct charge density analyses using DMC and density functional theory (DFT). We also identify a new material with an emission energy of 1.97(8) eV, which is close to the optimum of 2.03 eV for a red-emitting phosphor. To our knowledge, our work is the first report on studying excitation energies of a transition metal impurity using an ab initio many-body electronic structure method. In contrast, semilocal and hybrid-DFT largely underestimates, and fails to reproduce, some of the trends in the emission energies. Our work underscores the importance of an accurate account of exchange, correlation, and excitonic effects for localized excitations in defective solids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.