Abstract
This paper proposed excitation-emission matrix fluorescence spectroscopy coupled with multi-way chemometric techniques for characterization and classification of Chinese pale lager beers produced by different manufacturers. The undiluted and diluted beer samples presented different fluorescence fingerprints. Three-way and four-way parallel factor analysis (PARAFAC) were used to decompose the skillfully constructed three-way and four-way data arrays, respectively, to further achieve beer characterization and feature extraction. Based on the features extracted in different ways, four strategies for beer classification were proposed. In each strategy, three supervised classification methods including linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA) and k-nearest neighbor (kNN) were used to build discriminant models. By comparison, PARAFAC-data fusion-kNN method in strategy 3 and four-way PARAFAC-kNN method in strategy 4 obtained the best classification results. The classification strategy based on four-way sample-excitation-emission-dilution level data array was proposed to solve the problem of beer classification for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.