Abstract

Here, we report the radiative recombination behavior of a binary perovskite, MAPb(I0.2Br0.8)3, during phase separation by investigating photoluminescence (PL) spectrum modulations under different laser irradiation conditions: power density, wavelength (379 and 470 nm), and irradiation time. During laser irradiation, the original PL spectrum was divided into three PL peaks assigned to the 1st I-rich, 2nd I-rich, and Br-rich phases. The observed modulations of the intensity and wavelength of the PL spectrum could be explained by the multiple effects of the charge carrier sink, band filling, and Br-rich phase coarsening. Under a weak laser power density, the observed PL predominantly showed the sink effects of the charge carriers through the excited state potential minimum. As the laser power density or irradiation time increased, new high-energy PL bands appeared owing to the band filling and Br-rich phase formation. With a further increase in the laser power or irradiation time, the PL from the Br-rich phase was intensified, but its PL peak position was red-shifted owing to the quantum size effect from the Br-rich phase coarsening. These variations in PL intensity and charge carrier behavior were carefully studied using time- and space-resolved fluorescence imaging microscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.