Abstract

The dynamics of rotationally autoionizing Rydberg states of molecular hydrogen is investigated using a time-dependent extension of multichannel quantum defect theory, in which the time-dependent wave packets are constructed using first-order perturbation theory. An analytical expression for the complex excitation function for a sequence of Gaussian excitation pulses is derived and then employed to investigate the influence of pairs of pulses with well-defined phase differences on the decay dynamics and final-state composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call