Abstract

Excited state intramolecular proton transfer (ESIPT) organic luminophores with excitation wavelength-dependent color tunability have drawn significant attention due to their exceptional photoluminescent properties in solution and solid state. A novel salicylaldehyde-based Schiff's base molecule, (E)-N'-(3,5-dibromo-2-hydroxybenzylidene)benzohydrazide (BHN) exhibited stimuli (excitation wavelength and pH) induced changes in fluorescence properties which was utilised for applications like trace level water sensing in organic solvents (THF, acetone and DMF), detection and quantification of biogenic amines and anticounterfeiting. In the solution state, BHN rendered a ratiometric detection and quantification of ammonia, diethylamine and trimethylamine, which is further supported by DFT studies. The photoluminescent response of BHN towards various biogenic amines was later utilised to monitor shrimp freshness. The investigation carried out highlights the potential versatility of ESIPT hydrazones, which renders multi stimuli responsive behaviour that can be utilised for water sensing, anticounterfeiting and the detection and quantification of biogenic amines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.