Abstract

The excitonic and deep-level photoluminescence (PL) in CdSe nanocrystal (NC) films (wurtzite type) was studied under continuous-wave excitation as a function of excitation power, temperature, and time of photoaging. It was shown that the intensity-power dependencies are identical for excitonic and deep-level emissions in a wide temperature range. At low temperatures (80-100 K), both emissions were saturated at the laser power used, which generates more than one exciton per nanocrystal. A transition point from the linear to the saturated region was dependent on the temperature, size, and quality of the NCs. A clear inverse dependency between the intensities of excitonic and deep-level emissions was revealed at 80 K over the entire sample area. At room-temperature, the quantum yield dropped significantly and a higher laser power was needed to reach PL saturation. An increase in temperature led to worsening of the reverse dependence between excitonic and deep-level emissions, and at room-temperature, they became uncorrelated. These results can be explained by Auger recombination and also by an increase of nonradiative recombination in the surface states with increasing temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call