Abstract

In cardiac muscle, the process of excitation-contraction coupling (ECC) describes the chain of events that links action potential induced myocyte membrane depolarization, surface membrane ion channel activation, triggering of Ca2+ induced Ca2+ release from the sarcoplasmic reticulum (SR) Ca2+ store to activation of the contractile machinery that is ultimately responsible for the pump function of the heart. Here we review similarities and differences of structural and functional attributes of ECC between atrial and ventricular tissue. We explore a novel "fire-diffuse-uptake-fire" paradigm of atrial ECC and Ca2+ release that assigns a novel role to the SR SERCA pump and involves a concerted "tandem" activation of the ryanodine receptor Ca2+ release channel by cytosolic and luminal Ca2+. We discuss the contribution of the inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ release channel as an auxiliary pathway to Ca2+ signaling, and we review IP3 receptor-induced Ca2+ release involvement in beat-to-beat ECC, nuclear Ca2+ signaling, and arrhythmogenesis. Finally, we explore the topic of electromechanical and Ca2+ alternans and its ramifications for atrial arrhythmia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call