Abstract

Global analysis of a set of room temperature transient absorption spectra of Rhodobacter sphaeroides reaction centers, recorded in wide temporal and spectral ranges and triggered by femtosecond excitation of accessory bacteriochlorophylls at 800 nm, is presented. The data give a comprehensive review of all spectral dynamics features in the visible and near UV, from 330 to 700 nm, related to the primary events in the Rb. sphaeroides reaction center: excitation energy transfer from the accessory bacteriochlorophylls (B) to the primary donor (P), primary charge separation between the primary donor and primary acceptor (bacteriopheophytin, H), and electron transfer from the primary to the secondary electron acceptor (ubiquinone). In particular, engagement of the accessory bacteriochlorophyll in primary charge separation is shown as an intermediate electron acceptor, and the initial free energy gap of approximately 40 meV, between the states P(+)B(A)(-) and P(+)H(A)(-) is estimated. The size of this gap is shown to be constant for the whole 230 ps lifetime of the P(+)H(A)(-) state. The ultrafast spectral dynamics features recorded in the visible range are presented against a background of results from similar studies performed for the last two decades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call