Abstract

Living cells employ excitable reaction-diffusion waves for internal cellular functions, in which curvature-inducing proteins are often involved. However, the role of their mechanochemical coupling is not well understood. Here, we report the membrane deformation induced by the excitable reaction-diffusion waves of curvature-inducing proteins and the alternation in the waves due to the deformation, using a coarse-grained simulation of tubular membranes with a modified FitzHugh-Nagumo model. Protein-propagating waves deform tubular membranes and large deformations induce budding and erase waves. The wave speed and shape are determined by a combination of membrane deformation and spatial distribution of the curvature-inducing protein. Waves are also undulated in the azimuthal direction depending on the condition. Rotationally symmetric waves locally deform the tubes into a symmetric shape but maintain a straight shape on average. Our simulation method can be applied to other chemical reaction models and used to investigate various biomembrane phenomena.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call