Abstract

Fragile X syndrome (FXS) is caused by a failure of neuronal cells to express the gene encoding the fragile mental retardation protein (FMRP). Clinical features of the syndrome include intellectual disability, learning impairment, hyperactivity, seizures and anxiety. Fmr1 knockout (KO) mice do not express FMRP and, as a result, reproduce some FXS behavioral abnormalities. While intrinsic and synaptic properties of excitatory cells in various part of the brain have been studied in Fmr1 KO mice, a thorough analysis of action potential characteristics and input-output function of CA1 pyramidal cells in this model is lacking. With a view to determining the effects of the absence of FMRP on cell excitability, we studied rheobase, action potential duration, firing frequency–current intensity relationship and action potential after-hyperpolarization (AHP) in CA1 pyramidal cells of the hippocampus of wild type (WT) and Fmr1 KO male mice. Brain slices were prepared from 8- to 12-week-old mice and the electrophysiological properties of cells recorded. Cells from both groups had similar resting membrane potentials. In the absence of FMRP expression, cells had a significantly higher input resistance, while voltage threshold and depolarization voltage were similar in WT and Fmr1 KO cell groups. No changes were observed in rheobase. The action potential duration was longer in the Fmr1 KO cell group, and the action potential firing frequency evoked by current steps of the same intensity was higher. Moreover, the gain (slope) of the relationship between firing frequency and injected current was 1.25-fold higher in the Fmr1 KO cell group. Finally, AHP amplitude was significantly reduced in the Fmr1 KO cell group. According to these data, FMRP absence increases excitability in hippocampal CA1 pyramidal cells.

Highlights

  • Fragile X syndrome (FXS) is the most common form of inherited human intellectual disability

  • We investigated whether the absence of fragile mental retardation protein (FMRP) by genetic modification alters rheobase, the firing frequency–current injection relationship, and/or the shape of the action potential, including after-hyperpolarization (AHP)

  • The present study demonstrates an increase in excitability in hippocampal CA1 pyramidal cells from Fmr1 KO mice compared with WT mice

Read more

Summary

Introduction

Fragile X syndrome (FXS) is the most common form of inherited human intellectual disability. Many FXS patients display learning impairment, hyperactivity, hypersensitivity to sensory stimuli, seizures and anxiety. Thirty percent of children with FXS are diagnosed with autism [1]. FXS is caused by transcriptional silencing of the FMR1 gene which encodes the fragile mental retardation protein (FMRP). Fmr knockout (KO) mice do not express FMRP, and reproduce some of the behavioral abnormalities seen in FXS; these animals are commonly used as a model to understand the molecular-, synaptic-, cellular-, and neural network-bases of the syndrome [2,3,4,5,6,7].

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.