Abstract

Bistability, excitability, and self-pulsing regimes in an InP-based two-dimensional (2D) photonic crystal nanocavity with quantum wells as an active medium are investigated. A resonant cw beam is evanescently coupled into the cavity through a tapered microfiber. In such conditions, we show that the cavity exhibits class II excitability, which arises from the competition between a fast electronic nonlinear effect, given by carrier-induced refractive index change, and slow thermal dynamics. Multiple perturbation-pulse experiments allow us to measure the refractory time (``dead time'' between two excitable pulses) of the excitable nanocavity system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.