Abstract

We have used the buoyant density shift method to measure excision-repair patch lengths in UV-irradiated repair-proficient human cells and in primary fibroblasts belonging to xeroderma pigmentosum complementation group C (XP-C), in which excision repair of UV-induced photoproducts is dependent upon transcription. The patch size was found to be about 30 nucleotides for both cell types. This agrees with the size of the DNA fragments excised in vitro by the dual incisions of the structure-specific nucleases XPG and ERCC1–XPF. We conclude that the XPC protein is not required to target the excision nucleases to sites of DNA cleavage in transcribed strands of expressed genes or to protect the newly incised DNA from further processing by exonucleases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call