Abstract

Highly efficient solution-processable emitters are greatly desired to develop low-cost organic light-emitting diodes (OLEDs). The recently developed thermally activated delayed fluorescence (TADF) materials are promising candidates, but blue TADF materials compatible with the all-solution-process have still not been achieved. Here, a series of TADF materials, named X-4CzCN, are developed by introducing the bulky units through an unconjugated linker, which realizes high molecular weight to enhance the solvent resistance ability without disturbing the blue TADF feature. Meanwhile, the peripheral wrapping groups efficiently inhibit the triplet-triplet and triplet-polaron quenching by isolating the energy-transfer and charge-transporting channels. The photophysical measurements indicate that a small variation in peripheral unit will have a noticeable effect on the luminescence efficiency. The enlarged volume of peripheral units will make the electroluminescent spectra blueshift, while enhancing the energy transfer of exciplex and blocking the energy leakage of electromer can facilitate the exciton utilization. As a result, the fully solution-processed blue OLED achieves a CIE of (0.16, 0.27), a low turn on voltage of 2.9 eV, and a high external quantum efficiency of 20.6 %. As far as we known, this is the first report of all-solution-processed TADF OLEDs with blue emission, which exhibits a high efficiency even comparable to the vacuum-deposited devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.