Abstract
This paper reports the development of vapor/liquid visualization systems based on an exciplex (excited state complex) formed between dimethyl or diethyl-substituted aniline and trimethyl-substituted naphthalenes. Quantum yields of individual monomers were measured and the exciplex emission spectra as well as fluorescence quenching mechanisms were analyzed. Among the many systems and formulations investigated in this study, an exciplex consisting of 7% 1,4,6-trimethylnaphthalene (TMN) and 5% N,N-dimethylaniline (DMA) in 88% isooctane was found to be the best system for the laser-induced exciplex fluorescence (LIEF) technique, which is used to observe mixture formation in diesel or spark ignition (SI) engines. Observation of spectrally separated fluorescence from monomer in the gas phase and from exciplex in the gasoline fuel requires that the exciplex forming dopants have boiling points within the distillation range of gasoline (20 to 215 C). The systems reported here are expected to be coevaporative with isooctane solvent and thus they should be effective in tracking the vaporization of automotive gasoline fuel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.