Abstract

2-O-tert-Butyldimethylsilyl-4,6-bis-O-pyrenoyl-myo-inositol-1,3,5-orthoformate (6) and 2-O-tert-butyldimethylsilyl-4-O-[4-(dimethylamino)benzoyl]-6-O-pyrenoyl-myo-inositol-1,3,5-orthoacetate (10) adopt conformationally restricted unstable chairs with five axial substituents. In the symmetrical diester 6, the two pi-stacked pyrenoyl groups are electron acceptor-donor partners, giving a strong intramolecular excimer emission. In the mixed ester 10, the pyrenoyl group is the electron acceptor and the 4-(dimethylamino)benzoyl ester is the electron donor, giving a strong intramolecular exciplex emission. The conformation of the mixed ester 10 was assessed using 1H NMR spectroscopy (1H-NOESY) and computational studies. which showed the minimum inter-centroid distance between the two aromatic systems to be approximately 3.9 A. Upon addition of acid, the orthoformate/orthoacetate trigger in 6 and 10 was cleaved, which caused a switch of the conformation of the myo-inositol ring to the more stable penta-equatorial chair, leading to separation of the aromatic ester groups and loss of excimer and exciplex fluorescence, respectively. This study provides proof of principle for the development of novel fluorescent molecular probes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.