Abstract

While the liquid-liquid phase separation (LLPS) process in proteins has been studied in great detail, it has not been widely explored how the associated protein hydration changes during the process and how crucial its role is in the process itself. In this contribution, we experimentally explore the alteration of lysozyme hydration during its LLPS process using attenuated total reflection (ATR)-FTIR spectroscopy in the THz frequency region (1.5-21 THz). Additionally, we explore the role of excipients (l-arginine, sucrose, bovine albumin (BSA), and ubiquitin (Ubi)) in regulating the process and found that, while sucrose stabilizes the LLPS, BSA inhibits it. The effect of Arg in the LLPS is subtle, and that of Ubi is concentration dependent. We made a detailed analysis of the hydration profile of Lys in the presence of these excipients and observe that a change in hydration in terms of H-bond making/breaking is a definite signature regulating the process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.