Abstract
The excimer laser nitriding process reported is developed to enhance the mechanical and chemical properties of aluminum alloys. An excimer laser beam is focused onto the alloy surface in a cell containing 1-bar nitrogen gas. A vapor plasma expands from the surface and a shock wave dissociates and ionizes nitrogen. It is assumed that nitrogen from plasma in contact with the surface penetrates to some depth. Thus it is necessary to work with a sufficient laser fluence to create the plasma, but this fluence must be limited to prevent laser-induced surface roughness. The nitrogen-concentration profiles are determined from Rutherford backscattering spectroscopy and scanning electron microscopy coupled to energy-dispersive X-ray analysis. Crystalline quality is evidenced by an X-ray diffraction technique. Transmission electron microscopy gives the in-depth microstructure. Fretting coefficient measurements exhibit a lowering for some experimental conditions. The polycrystalline nitride layer obtained is several micrometers thick and composed of a pure AlN (columnar microstructure) top layer (200–500 nm thick) standing on an AlN (grains) in alloy diffusion layer. From the heat conduction equation calculation it is shown that a 308-nm laser wavelength would be better to increase the nitride thickness, as it corresponds to a weaker reflectance R value for aluminum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Physics A Materials Science & Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.