Abstract

AbstractWe have utilized a recently developed transient two-dimensional model for simulating localized beam-induced melting and solidification of thin silicon films on SiO2. Specifically, by tailoring the lateral beam profile, we simulate those situations that are encountered in the artificially-controlled superlateral growth (ACSLG) method, in which various techniques are utilized to irradiate the sample in preselected regions of a silicon film. The spatially and temporally localized character of heating is simulated by introducing a time-dependent two-dimensional heat-source function. The evolution of melt-creation and ensuing solidification is studied as a function of incident energy density and film thickness. The results show two distinct types of behavior as a function of incident energy density: at low energy densities, partial melting and predominantly vertical solidification occur; while at high energy densities, complete melting of the irradiated portion of the film is followed by rapid lateral solidification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.