Abstract
Exchanges of water between the Upper Floridan aquifer and the Lower Suwannee River were evaluated using historic and current hydrologic data from the Lower Suwannee River Basin and adjacent areas that contribute ground-water flow to the lowest 76 miles of the Suwannee River and the lowest 28 miles of the Santa Fe River. These and other data were also used to develop a computer model that simulated the movement of water in the aquifer and river, and surface- and ground-water exchanges between these systems over a range of hydrologic conditions and a set of hypothetical water-use scenarios. Long-term data indicate that at least 15 percent of the average annual flow in the Suwannee River near Wilcox (at river mile 36) is derived from ground-water discharge to the Lower Suwannee and Lower Santa Fe Rivers. Model simulations of ground-water flow to this reach during water years 1998 and 1999 were similar to these model-independent estimates and indicated that ground-water discharge accounted for about 13 percent of the flow in the Lower Suwannee River during this time period. The simulated average ground-water discharge to the Lower Suwannee River downstream from the mouth of the Santa Fe River was about 1,600 and 1,300 cubic feet per second during water years 1998 and 1999, respectively. Simulated monthly average ground-water discharge rates to this reach ranged from about 1,100 to 2,400 cubic feet per second. These temporal variations in ground-water discharge were associated with climatic phenomena, including periods of strong influence by El Nino-associated flooding, and La Nina-associated drought. These variations showed a relatively consistent pattern in which the lowest rates of ground-water inflow occurred during periods of peak flood levels (when river levels rose faster than ground-water levels) and after periods of extended droughts (when ground-water storage was depleted). Conversely, the highest rates of ground-water inflow typically occurred during periods of receding levels that followed peak river levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.