Abstract

NiFe2O4 nanoparticles (<10 nm) embedded in a NiO matrix have been fabricated by calcining the corresponding NiIIFeIII-layered double hydroxide (LDH) precursors at high temperature (500 °C). Compared with the NiFe2O4/NiO nanocomposite obtained by calcination of a precursor prepared by a traditional chemical coprecipitation method, those derived from NiFe-LDH precursors show much higher blocking temperatures (T B) (˜380 K). The enhanced magnetic stability can be ascribed to the much stronger interfacial interaction between NiFe2O4 and NiO phases due to the topotactic nature of the transformation of the LDH precursor to the NiFe2O4/NiO composite material. Through tuning the NiII/FeIII molar ratio of the NiFe-LDH precursor, the NiFe2O4 concentration can be precisely controlled, and the T B value as well as the magnetic properties of the final material can also be regulated. This work represents a successful example of the fabrication of ferro(ferri)magnetic (FM)/antiferrimagnetic (AFM) systems with high magnetic stability from LDH precursors. This method is general and may be readily extended to other FM/AFM systems due to the wide range of available LDH precursors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.