Abstract

SummaryThis paper derives characterizations of bivariate binomial distributions of the Lancaster form with Krawtchouk polynomial eigenfunctions. These have been characterized by Eagleson, and we give two further characterizations with a more probabilistic flavour: the first as sums of correlated Bernoulli variables; and the second as the joint distribution of the number of balls of one colour at consecutive time points in a generalized Ehrenfest urn. We give a self‐contained development of Krawtchouck polynomials and Eagleson’s theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.