Abstract
Any exchangeable, time-homogeneous Markov processes on \([k]^{\mathbb {N}}\) with cadlag sample paths projects to a Markov process on the simplex whose sample paths are cadlag and of locally bounded variation. Furthermore, any such process has a de Finetti-type description as a mixture of independent, identically distributed copies of time-inhomogeneous Markov processes on \([k]\). In the Feller case, these time-inhomogeneous Markov processes have a relatively simple structure; however, in the non-Feller case, a greater variety of behaviors is possible since the transition law of the underlying Markov process on \([k]^{\mathbb N}\) can depend in a nontrivial way on its exchangeable \(\sigma \)-algebra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.