Abstract

Exchange protein directly activated by cAMP (Epac) mediates cAMP-mediated cell signal independent of protein kinase A (PKA). Mice lacking Epac1 displayed metabolic defect suggesting possible functional involvement of skeletal muscle and exercise capacity. Epac1 was highly expressed, but not Epac 2, in the extensor digitorum longus (EDL) and soleus muscles. The exercise significantly increased protein expression of Epac 1 in EDL and soleus muscle of wild-type (WT) mice. A global proteomics and pathway analyses revealed that Epac 1 deficiency mainly affected "the energy production and utilization" process in the skeletal muscle. We have tested their forced treadmill exercise tolerance. Epac1-/- mice exhibited significantly reduced exercise capacity in the forced treadmill exercise and lower number of type 1 fibers than WT mice. The basal protein level of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) was reduced in the Epac1-/- mice. Furthermore, increasing expression of PGC-1α by exercise was also significantly attenuated in the skeletal muscle of Epac1-/- mice. The expressions of downstream target genes of PGC-1α, which involved in uptake and oxidation of fatty acids, ERRα and PPARδ, and fatty acid content were lower in muscles of Epac1-/-, suggesting a role of Epac1 in forced treadmill exercise capacity by regulating PGC-1α pathway and lipid metabolism in skeletal muscle. Taken together, Epac1 plays an important role in exercise capacity by regulating PGC-1α and fatty acid metabolism in the skeletal muscle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.