Abstract
Margrabe provides a pricing formula for an exchange option where the distributions of both stock prices are log-normal with correlated Wiener components. Merton has provided a formula for the price of a European call option on a single stock where the stock price process contains a continuous Poisson jump component, in addition to a continuous log-normally distributed component. We use Merton's analysis to extend Margrabe's results to the case of exchange options where both stock price processes also contain compound Poisson jump components. A Radon-Nikod?ym derivative process that induces the change of measure from the market measure to an equivalent martingale measure is introduced. The choice of parameters in the Radon-Nikod?ym derivative allows us to price the option under different financial-economic scenarios. We also consider American style exchange options and provide a probabilistic intepretation of the early exercise premium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.