Abstract
The chemokine CCL5 recruits monocytes into inflamed tissues by triggering primarily CCR1-mediated arrest on endothelial cells, whereas subsequent spreading is dominated by CCR5. The CCL5-induced arrest can be enhanced by heteromer formation with CXCL4. To identify mechanisms for receptor-specific functions, we employed CCL5 mutants and transfectants expressing receptor chimeras carrying transposed extracellular regions. Mutation of the basic 50s cluster of CCL5, a coordinative site for CCL5 surface presentation, reduced CCR5- but not CCR1-mediated arrest and transmigration. Impaired arrest was restored by exchanging the CCR5-N-terminus for that of CCR1, which supported arrest even without the 50s cluster, whereas mutation of the basic 40s cluster essential for proteoglycan binding of CCL5 could not be rescued. The enhancement of CCL5-induced arrest by CXCL4 was mediated by CCR1 requiring its third extracellular loop. The domain exchanges did not affect formation and co-localisation of receptor dimers, indicating a sensing role of the third extracellular loop for hetero-oligomers in an arrest microenvironment. Our data identify confined targetable regions of CCR1 specialised to facilitate CCL5-induced arrest and enhanced responsiveness to the CXCL4-CCL5 heteromer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.