Abstract

The chemistry of mono-adducts ([Cl–X]+) between Cl+ and a Lewis base (X = NH3, H2O, HF, PH3, H2S or HCl) has been investigated using ab initio molecular orbital calculations at the G2 level. The reactions of such mono-adducts with additional Lewis bases (Y) are found to give [Y–Cl]+ plus X, generally without an intermediate barrier, via a bis-adduct [Y–Cl–X]+. The binding energies of the bis-adduct and the reaction energies are related to the donor properties of the Lewis bases. The reactions between the mono-adducts [Cl–X]+ and the π-donors ethylene and acetylene yield chloriranium and chlorirenium ions, respectively. These reactions proceed via complexes that resemble either the reactants or products depending on the sign of the reaction energy, the latter in turn being determined by the donor ability of the Lewis base. Results for the chlorine systems are compared with those for the corresponding phosphorus systems investigated previously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.