Abstract

Amide proton exchange measured by one-dimensional 15N-edited proton NMR has been used to probe helical structure in an alanine-based peptide. This study is the first report of individual peptide NH exchange rates determined in a simple, repeating sequence peptide whose helical structure can be predicted by helix-coil theory. Measured protection factors directly demonstrate that the ends of the helix are frayed. The protection factors are compared to the Lifson-Roig theory, modified to include N-capping, using known values for helix propensities and N-cap propensities. Base-catalyzed exchange rates are shown to measure the extent of hydrogen bonding of the peptide NHs, and the results are fitted by a simple model in which hydrogen bonding of the peptide NH group provides protection and no exchange occurs from the hydrogen-bonded state. Protection from acid-catalyzed exchange correlates with hydrogen bonding by both the NH and CO groups of a peptide unit: the data are fitted by a model in which exchange occurs only when both hydrogen bonds formed by a peptide unit are broken. This result indicates that acid-catalyzed exchange occurs by the O-protonation mechanism, in agreement with earlier work [Perrin & Arrhenius (1982) J. Am. Chem. Soc. 104, 6693-6696; Perrin et al. (1984) J. Am. Chem. Soc. 106, 2749-2753; Tüchsen & Woodward (1985) J. Mol. Biol. 185, 421-430].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call