Abstract

The magnetic relaxation and magnetization blocking barriers of tailor-made homo- and heterodinuclear compounds [Dy2 (opch)2 (OAc)2 (H2 O)2 ]⋅MeOH (1) and [DyMn(opch)2 (OAc)(MeOH)(H2 O)2 ] (2), where H2 opch is (E)-N'-(2-hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide, were systematically investigated and the change in single-molecule magnet behavior originating from targeted replacement of one dysprosium site in the Dy2 compound with manganese was elucidated through a combination of experimental and theoretical studies. A detailed comparative study on these closely related model compounds revealed remarkable changes of the crystal-field splitting and anisotropy of the Dy site and the total exchange spectrum due to the replacement of Dy by Mn. The blocking barriers of these two compounds, which explain their different relaxation behaviors, were analyzed. The two Ising doublets arising from the magnetic interaction in the case of 1 are strongly uniaxial, with tunneling splittings smaller than 10-6 cm-1 , and this leads to magnetic relaxation at temperatures exceeding the exchange energy (2.14 cm-1 ), which involves transition via the excited states corresponding to local transitions on the excited doublet at the Dy site. The third and fourth exchange doublets in 2 (located at 2.16 and 3.25 cm-1 , respectively) show much larger tunneling splittings (of 10-4 and 10-3 cm-1 , respectively), and thus open an important path for magnetic relaxation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.