Abstract

We present the magnetotransport studies of Ge1−xMnxTe ferromagnetic semiconductor under hydrostatic pressure. The investigation of the normal and Hall resistivities provide an insight to the dependence of carrier concentration, mobility, and magnetic properties on pressure. Our results reveal that the application of pressure changes the band structure, which can be explained by a two valence band model. We observe the enhancement and reduction of Curie temperature within a pressure range of 0–24 kbar. Analysis within the framework of the Ruderman–Kittel–Kasuya–Yosida model allows us to identify the factors in controlling the Tc, in which the exchange interaction plays a predominant role in the formation of ferromagnetic phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.